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Algorithm for numerical integration of the rigid-body equations of motion

Igor P. Omelyan*
Institute for Condensed Matter Physics, National Ukrainian Academy of Sciences,

1 Svientsitsky Street, UA-290011 Lviv, Ukraine
~Received 22 December 1997!

An algorithm for numerical integration of the rigid-body equations of motion is proposed. The algorithm
uses the leapfrog scheme and the quantities involved are angular velocities and orientational variables that can
be expressed in terms of either principal axes or quaternions. Due to specific features of the algorithm,
orthonormality and unit norms of the orientational variables are integrals of motion, despite an approximate
character of the produced trajectories. It is shown that the method presented appears to be the most efficient
among all such algorithms known.@S1063-651X~98!00107-X#

PACS number~s!: 02.60.Cb, 04.25.2g, 95.75.Pq
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The method of molecular dynamics~MD! plays a promi-
nent role in studying molecular liquids. All existing tech
niques appropriate to simulate such systems can be ca
rized depending on what types of parameters are chose
represent the rotational degrees of freedom and what kin
numerical algorithm is applied to integrate the correspond
equations of motion.

In the molecular approach, the phase trajectories are
sidered in view of translational and rotational motions. T
translational dynamics is defined by the motion of molecu
centers of masses, whereas the orientational motion ca
determined in terms of Eulerian angles@1,2#, quaternions
@3–8#, or principal-axis vectors@4#. The numerical integra-
tion within Eulerian angles is very inefficient due to sing
larities of the equations of motion@3,5#. If the quaternions or
principal-axis vectors are involved, additional effort must
made to conserve their unit norms or orthonormality.

The atomic approach@9# treats the dynamics of the sys
tem in terms of translational motion of individual atoms th
move under the potential-energy forces plus forces of c
straints introduced to hold interatomic distances const
This approach is believed to have good stability proper
because the usual Verlet algorithm can be applied here. N
ertheless, the atomic approach is sophisticated to implem
for point molecules and when there are more than two, th
or four atoms in the cases of linear, planar, and thr
dimensional molecules, respectively. Moreover, to reprod
the rigid molecular structure it is necessary to solve com
cated systems of nonlinear~in general, six per molecule!
equations at each time step of the integration@10#.

It is a common practice to integrate orientational moti
with the Gear predictor-corrector algorithm of a high ord
@11#. Such an algorithm, being accurate at very small ti
steps, quickly becomes unstable with increasing step
@10#. Translational motion is usually integrated with lowe
order Verlet@12#, velocity Verlet@13#, and leapfrog@14# in-
tegrators, because of their simplicity and exceptional num
cal stability. However, the original versions of the
integrators were constructed assuming that acceleratio
velocity independent and therefore they cannot be app
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directly to rotational dynamics. Analogous problems ar
with translational motion in the presence of magnetic fiel

In order to remedy that situation, Fincham@15# has de-
rived a rotational-motion version of the leapfrog algorithm
which systems of four nonlinear equations per molecule
quaternion components are solved by iteration. Ahlrichs a
Brode have introduced a method@16# in which principal axes
are considered as pseudoparticles and constraint forces
introduced to maintain their orthonormality. However, t
algorithm is within the Verlet framework and does not co
tain angular velocities explicitly. The quaternion dynami
with constraints was also formulated@17#. As a result, a dif-
ferent algorithm within the velocity Verlet framework ha
been generated. Recently, the principal-axis scheme has
adapted to this framework as well@18#. Nevertheless, it was
concluded that the best numerical stability can be achieve
the atomic-constraint approach.

In this paper we propose a leapfrog integrator of the rig
body equations of motion. The main idea consists in invo
ing angular velocities, instead of angular momenta, into
integration. This leads to significant simplifications with r
spect to angular-momentum versions@15#. The algorithm
seems to be the most efficient and simple, exhibiting exc
lent stability properties that are similar to those observ
within the cumbersome atomic-constraint technique.

Consider a classical system withN rigid molecules com-
posed ofM point atoms. Translational motion of the syste
is described in the usual way, applying Newton’s la
whereas two first-order equations per molecule of the ro
tional dynamics can be obtained as follows. According
Euler equations@1#, the rate of change in time of principa
components (VX

i ,VY
i ,VZ

i )5Vi of the angular velocity is

Ja

dVa
i

dt
5Ka

i ~ t !1~Jb2Jg!Vb
i ~ t !Vg

i ~ t !. ~1!

Here (a,b,g)5(X,Y,Z), (Y,Z,X), and (Z,X,Y), Ka
i are

principal components, K i5A ik i
1 , of the torque k i

5( j ;a,b
N;M (r i

a2r i)3f i j
ab exerted on moleculei with respect to

its center of massr i due to the site-site interactionsf i j
ab

[f(r i
a2r j

b) with the other molecules, andJa denote the prin-
cipal moments of inertia. The orientational variables we
1169 © 1998 The American Physical Society
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1170 PRE 58BRIEF REPORTS
collected in the square orthonormal matricesA i . The nine
elements of each matrix (i 51, . . . ,N) present coordinates o
three principal axes (X,Y,Z) of the molecule in the labora
tory frame. The position of atoma within moleculei in the
same frame is r i

a(t)5r i(t)1A i
1(t)Da, where Da

5(D1
a ,D2

a ,D3
a)1 is a vector column of these positions in th

body frame andA1 the matrix transposed toA.
The second equation follows from the definition of ang

lar velocity

dA i

dt
5S 0 VZ

i 2VY
i

2VZ
i 0 VX

i

VY
i 2VX

i 0
D A i[W~Vi !A i , ~2!

where the propertyAA15I of orthonormal matrices ha
been used,W(Vi) is a skew symmetric matrix associate
with angular velocity, i.e.,W1(Vi)52W(Vi), and I des-
ignates the unit matrix. In an alternative representation
matrix A i[A(qi) is a function of the four-componen
quaternionqi[(j i ,h i ,z i ,x i)

1 @4,5#. The time derivatives of
quaternions can be cast in the form

dqi

dt
5

1

2S 0 VZ
i 2VX

i 2VY
i

2VZ
i 0 2VY

i VX
i

VX
i VY

i 0 VZ
i

VY
i 2VX

i 2VZ
i 0

D qi[Q~Vi !qi ,

~3!

whereQ(Vi) is a skew symmetric matrix again and the u
quaternion normj i

21h i
21z i

21x i
251, which follows from

the orthonormality ofA i , has been used.
In the case of translational motion, it is easy to derive

leapfrog algorithm @14#: vi(t1h/2)5vi(t2h/2)1hai(t),
r i(t1h)5r i(t)1hvi(t1h/2), whereh denotes the time in-
crement, vi5dr i /dt is the center-of-mass velocity,ai(t)
5(1/m)( j ;a,b

N;M f i j
ab(t) is the molecular acceleration, andm is

the mass of a separate molecule. Recently, it has been sh
that, contrary to the conventional point of view, the order
truncation errors for this leapfrog is 4 rather than 3 for bo
coordinates and velocities due to a fortunate cancellatio
uncertainties@19#.

One problem with deriving a leapfrog algorithm for rot
tional motion is that angular accelerations~1! depend explic-
itly not only on spatial coordinates via molecular torques
also on angular velocities. Moreover, the time derivatives
orientational variables do not define angular velocities
rectly @see Eqs.~2! and ~3!#. These difficulties cannot be
handled with a simple leapfrog algorithm in which the po
tion and velocity are known at different times. It is wor
emphasizing that similar problems~even much more diffi-
cult! arise in the angular-momentum approach@15# and the
Verlet and velocity Verlet frameworks@17,18#.

The basic idea of our approach lies in involving princip
angular velocities in the integration process. Then, acting
the spirit of the leapfrog scheme and using the Euler eq
tion ~1!, one obtains
-
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Va
i ~n11!S t1

h

2D5Va
i S t2

h

2D1
h

Ja
@Ka

i ~ t !1~Jb2Jg!

3Vb
i ~n!~ t !Vg

i ~n!~ t !#. ~4!

While the molecular torquesKa
i (t) can easily be evaluate

via the coordinatesr i(t) andA i(t) or qi(t), a propagation of
the products of angular velocities in Eq.~4! to on-step levels
of time is necessary. The obvious choice for this is

Vb
i ~n!~ t !Vg

i ~n!~ t !5
1

2FVb
i S t2

h

2DVg
i S t2

h

2D
1Vb

i ~n!S t1
h

2DVg
i ~n!S t1

h

2D G . ~5!

In view of Eq. ~5!, Eq. ~4! constitutes a system of a max
mum of three nonlinear equations per molecule for the
knownsVa

i (t1h/2). The system is simple and can be solv
in a quite efficient way by iteration,n50,1, . . . , taking
Va

i (0)(t1h/2)5Va
i (t2h/2) as an initial guess. We note tha

the order of truncation errors for the angular-velocity eva
ation ~4! reduces to 3, because the approximation~5! is only
second order accurate forh.

The evaluation of orientational variables can be realiz
by writing

Si~ t1h!5Si~ t !1hH iSi S t1
h

2D ~6!

for principal-axis vectors (Si[A i ,H i[W i) and quaternion
(Si[qi ,H i[Qi) representations, where Eqs.~2! and ~3!
have been used. The matricesW i[W(Vi) andQi[Q(Vi)
are calculated using already defined angular velocitiesVi(t
1h/2), whereas orientational variables can be propagate
midstep levels of time as

Si S t1
h

2D5
1

2
@Si~ t !1Si~ t1h!#. ~7!

Equation ~6! together with Eq.~7! is in fact a system of
linear equations with respect to elements ofA i(t1h) and
qi(t1h), which therefore can be solved analytically. Th
result is

Si~ t1h!5S I2
h

2
H i D 21S I1

h

2
H i DSi~ t ![Qi~ t,h!Si~ t !.

~8!

More explicit expressions for the setQi[$Di ,Gi% of
evolution matrices are Di5$I @12(h2/4)V i

2#1hW i

1(h2/2)Pi%/@11(h2/4)V i
2# and Gi5$I @12(h2/16)V i

2#
1hQi%/@11(h2/16)V i

2# in the cases of principal axes an
quaternion representations, respectively, wherePi is a sym-
metric matrix with the elementsVa

i (t1h/2)Vb
i (t1h/2) and

V i
2[Vi

2(t1h/2). This completes the algorithm. It is inte
esting to remark that the evaluation~8! exhibits the same
fourth-order local accuracy forh as in the case of transla
tional coordinates, despite the second order of the interp
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FIG. 1. Total energy fluctuations as functions of the length of the simulations on liquid water, performed by various techniques
fixed time steps:~a! 1 fs, ~b! 2 fs, ~c! 3 fs, and~d! 4 fs.
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tion ~7!. The reason for this results again from a cancellat
of errors arising in coordinates and velocities during t
neighboring time steps.

It can be verified easily that the matrix (I2lH)21(I
1lH) is orthonormal at arbitrary values ofl, provided
H152H. Then, as follows from the construction~8!, the
evolution matricesDi andGi are orthonormal as well. There
fore, if initially the orthonormality ofA i and unit norms ofqi
are satisfied, they will be fulfilled perfectly at arbitrary time
in the future, despite the approximate character of the tra
tories produced. This can be considered as the main ad
tage of the algorithm derived that distinguishes it from
other singularity free algorithms because no additional ef
is needed to preserve the rigid structure of molecules.

We now test our approach on the basis of MD simulatio
on liquid water. The simulations were performed in anNVE
ensemble withN5256 molecules at a density of mN/V
51 g/cm3 and at a temperature of 298 K using the poten
of Jorgensenet al. @20# and reaction field geometry@21#. All
runs were started from an identical well equilibrated config
ration. The numerical stability was identified in terms
fluctuations of the total energyE5@Š(E2^E&)2

‹#1/2/u^E&u.
The kinetic part of the energy was calculated at timet by
setting V(t)5 1

2 @V(t2h/2)1V(t1h/2)#1O(h2) for V
[$vi ,Vi%, where the main termO(h2) of uncertainties is
n

c-
n-

l
rt

s

l

-

self-consistent with the second order of global errors for
algorithm ~one order lower than the minimal order of trun
cation errors for coordinates and velocities!.

As the atomic-constraint algorithm@9,10# is intensively
exploited and its performances are generally recognized,
have made comparative tests using this method and our
vanced leapfrog algorithm within quaternion and princip
axes variables, as well as all known other approach
namely, the fifth-order Gear algorithm@11#, the implicit
leapfrog algorithm of Fincham@15#, the pseudoparticle for-
malism @16#, and quaternion- and matrix-constraint metho
@17,18#. Samples ofE(t) as a function of the length of the
simulations at four fixed values ofh51, 2, 3, and 4 fs are
shown in Fig. 1. The usual value of the step size for study
such a system is 2 fs@22#.

Despite the fact that the Gear algorithm integrates
equations of motion very well ath51 fs, it has a very small
region of stability and cannot be used for greater time st
@see Fig. 1~b!#. Small step sizes are impractical in calcul
tions because too much expensive computer time is requ
to cover sufficient phase space. At the same time,
quaternion- and matrix-constraint methods as well as
pseudoparticle approach produce much more stable traje
ries and exhibit a similar equivalence in the energy cons
vation. Worse results are observed for Fincham’s leapf
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method. Finally, the best numerical stability is achieved
the atomic-constraint technique and our leapfrog sche
within both quaternion and principal axis representatio
which conserve the energy approximately with the same
curacy ~the results for principal-axis variables and t
pseudoparticle formalism are not included in the figure
simplify the graph!. Very few iterations~the mean number o
iterations varied from 3 to 5 ath5124 fs! were sufficient to
find solutions to the system of nonlinear equations~4! with a
precision of 10212. This contributes additional, negligibl
small computation time to the total time.

No shift of the total energy was observed for the atom
constraint and our leapfrog techniques ath<4 fs over a
length of 10 000 steps. To reproduce features of anNVE
ensemble quantitatively, it is necessary for the ratioG
5E/Y of the total energy fluctuations to the fluctuationsY
of the potential energy to be no more than a few percent.
have obtained the following levels ofE at the end of the runs
in our leapfrog approach: 0.0016%, 0.0065%, 0.015%,
0.029%, corresponding toG'0.29%, 1.2%, 2.7%, and 5.2%
at h51, 2, 3, and 4 fs, respectively~for the system unde
considerationY'0.56%). Therefore, the greatest time st
n
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,
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considered~4 fs! is still suitable for precise calculations. Th
ratio G can be fitted with great accuracy to the functionCh2

with a coefficient ofC'0.29% fs22. This is completely in
line with our theoretical prediction about a characteris
square growth of global errors and, as a consequence,E(t) at
t@h. The square growth was observed in all other a
proaches, except for the Gear algorithm. However, only
advanced leapfrog algorithm provides a minimum ofC and
total energy fluctuations.

The algorithm presented might become popular beca
of its great stability, simplicity to implement for arbitrar
rigid bodies, and its intrinsic conservation of rigid structure
These features should be considered as significant benefi
the algorithm with respect to all the other approaches. It
easily be substituted into existing MD programs on rig
polyatomic molecules. Moreover, since velocities appear
plicitly, the algorithm can be extended to a thermostat v
sion and to integration in the presence of magnetic fields.
plan to discuss these problems elsewhere.

The author thanks the president of Ukraine for financ
support.
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