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Algorithm for numerical integration of the rigid-body equations of motion
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An algorithm for numerical integration of the rigid-body equations of motion is proposed. The algorithm
uses the leapfrog scheme and the quantities involved are angular velocities and orientational variables that can
be expressed in terms of either principal axes or quaternions. Due to specific features of the algorithm,
orthonormality and unit norms of the orientational variables are integrals of motion, despite an approximate
character of the produced trajectories. It is shown that the method presented appears to be the most efficient
among all such algorithms knowf51063-651X98)00107-X]

PACS numbes): 02.60.Cb, 04.25:¢g, 95.75.Pq

The method of molecular dynami¢siD) plays a promi-  directly to rotational dynamics. Analogous problems arise
nent role in studying molecular liquids. All existing tech- with translational motion in the presence of magnetic fields.
niques appropriate to simulate such systems can be catego- In order to remedy that situation, Finchgr5] has de-
rized depending on what types of parameters are chosen ttved a rotational-motion version of the leapfrog algorithm in
represent the rotational degrees of freedom and what kind d¥hich systems of four nonlinear equations per molecule for
numerical algorithm is applied to integrate the correspondingluaternion components are solved by iteration. Ahlrichs and
equations of motion. Brode have introduced a methftb] in which principal axes

In the molecular approach, the phase trajectories are co@e considered as pseudoparticles and constraint forces are
sidered in view of translational and rotational motions. Theintroduced to maintain their orthonormality. However, the
translational dynamics is defined by the motion of molecula@!gorithm is within the Verlet framework and does not con-
centers of masses, whereas the orientational motion can B@in angular velocities explicitly. The quaternion dynamics
determined in terms of Eulerian anglgs,2], quaternions with constraints was also formulat¢dl7]. As a result, a dif-
[3_8]7 or principa|-axis Vector$4]_ The numerical integra- ferent algorithm within the velocity Verlet framework has
tion within Eulerian angles is very inefficient due to singu- been generated. Recently, the principal-axis scheme has been
larities of the equations of motidi3,5]. If the quaternions or adapted to this framework as w¢ll8]. Nevertheless, it was
principal-axis vectors are involved, additional effort must beconcluded that the best numerical stability can be achieved in
made to conserve their unit norms or orthonormality. the atomic-constraint approach.

The atomic approacf9] treats the dynamics of the sys-  In this paper we propose a leapfrog integrator of the rigid-
tem in terms of translational motion of individual atoms thatPody equations of motion. The main idea consists in involv-
move under the potential-energy forces plus forces of coning angular velocities, instead of angular momenta, into the
straints introduced to hold interatomic distances constanintegration. This leads to significant simplifications with re-
This approach is believed to have good stability propertieSpect to angular-momentum versiof&5]. The algorithm
because the usual Verlet algorithm can be applied here. Neyeems to be the most efficient and simple, exhibiting excel-
ertheless, the atomic approach is sophisticated to implemefnt stability properties that are similar to those observed
for point molecules and when there are more than two, thre@Vithin the cumbersome atomic-constraint technique.
or four atoms in the cases of linear, planar, and three- Consider a classical system withrigid molecules com-
dimensional molecules, respectively. Moreover, to reproduc®0sed ofM point atoms. Translational motion of the system
the rigid molecular structure it is necessary to solve compliis described in the usual way, applying Newton's law,
cated systems of nonlinedin general, six per molecule Whereas two first-order equations per molecule of the rota-
equations at each time step of the integrafib@). tional dynamics can be obtained as follows. According to

It is a common practice to integrate orientational motionEuler equationg1], the rate of change in time of principal
with the Gear predictor-corrector algorithm of a high ordercomponents @y ,Q\ ,Q%) =€, of the angular velocity is
[11]. Such an algorithm, being accurate at very small time
steps, quickly becomes unstable with increasing step size ina _ _ _
[10]. Translational motion is usually integrated with lower- JQTZKL(I)JF(JB—Jy)Q'g(t)Q'y(t)- )
order Verlet[12], velocity Verlet[13], and leapfrod 14] in-

tegrators, because of their simplicity and exceptional numeri- i
cal stability. However, the original versions of these €€ @B,7)=(X.Y,2), (Y’Z’Xl' and ¢,X,Y), K, are
integrators were constructed assuming that acceleration Rfincipal components, K;=Aik;", of the torque k;
velocity independent and therefore they cannot be appliedr =} ab(rf—ri) X fi® exerted on moleculé with respect to
its center of mass; due to the site-site interactiorfﬁID
=f(ri— r}’) with the other molecules, anj, denote the prin-

*Electronic address: nep@icmp.lviv.ua cipal moments of inertia. The orientational variables were
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collected in the square orthonormal matrices The nine

. h . h h .
elements of each matrix €1, . .. N) present coordinates of QMY t+ E) :Qla(t_ 5 +E[Kla(t)+(‘lﬁ_3v)
three principal axesX,Y,Z) of the molecule in the labora- ) )
tory frame. The position of atora within moleculei in the x QM (1), M(1)]. 4

same frame is r2(t)=r;(t)+A"(t)A% where A? _
=(A%,A5,A%)" is a vector column of these positions in the While the molecular torquek! (t) can easily be evaluated

body frame andA™ the matrix transposed tA. via the coordinates;(t) andA,(t) or g;(t), a propagation of
The second equation follows from the definition of angu-the products of angular velocities in Eg) to on-step levels
lar velocity of time is necessary. The obvious choice for this is
o 0, -ol QLD (1) =2 o L P P
dA, i z | Y B Y 2|8 2/ "y 2
rTE -Qz 0 Qx |A=WQ)A, h h
Qy -0 0 +QL0| t+ E)Q';“) t+5]]. ©

where the propertyAA =1 of orthonormal matrices has In view of Eq. (5), Eq. (4) constitutes a system of a maxi-
been usedW(£);) is a skew symmetric matrix associated mum of three nonlinear equations per molecule for the un-
with angular velocity, i.e. W* (Q;)=—-W(£;), andl des-  knownsQ' (t+h/2). The system is simple and can be solved
ignates the unit matrix. In an alternative representation thén a quite efficient way by iterationn=0,1, . .., taking
matrix Aj=A(q;) is a function of the four-component O ©(t+h/2)=0Q! (t—h/2) as an initial guess. We note that
quaterniorg;=(&;,7;.4i.xi) " [4,5]. The time derivatives of the order of truncation errors for the angular-velocity evalu-

quaternions can be cast in the form ation (4) reduces to 3, because the approximati®nis only
second order accurate for
i i i The evaluation of orientational variables can be realized
_ by writing

dg; 1| -9, o0 -0af 0}
_n_Z i i i QiEQ(Qi)qi’
at 2| Oy Oy 0 Q)

o, -0 -0, o

5 ®)

s(t+h)=s(t)+hHi:~;(t+E
©)

for principal-axis vectors §=A; ,H;=W,) and quaternion

(S=q; ,H;=Q;) representations, where Eq&) and (3)

whereQ(€;) is a skew symmetric matrix again and the unit have been used. The matricdg=W(£2;) and Q;=Q(€;)

guaternion norm§i2+ 77i2+ §i2+Xi2=1, which follows from are calculated using already defined angular velocieg

the orthonormality ofA;, has been used. +h/2), whereas orientational variables can be propagated to
In the case of translational motion, it is easy to derive themidstep levels of time as

leapfrog algorithm [14]: v;(t+h/2)=v;(t—h/2)+ha(t),

ri;(t+h)=r;(t) +hv,(t+h/2), whereh denotes the time in-

crement,v,=dr;/dt is the center-of-mass velocityg;(t) S

= (LUm)SPLfER(t) is the molecular acceleration, amd is

the mass of a separate molecule. Recently, it has been showuation (6) together with Eq.(7) is in fact a system of

that, contrary to the conventional point of view, the order ofjinear equations with respect to elementsAft+h) and

truncation errors for this leapfrog is 4 rather than 3 for bothy,(t 4 h), which therefore can be solved analytically. The
coordinates and velocities due to a fortunate cancellation

hy 1
t+5) = 5[SO+S(t+N]. @

esult is
uncertaintieg19].
One problem with deriving a leapfrog algorithm for rota- h -1 h
tional motion is that angular acceleratioi$ depend explic- S(t+h)= ( |- EHi) |+ EHi)S(t)EGi(t,h)S(t).
itly not only on spatial coordinates via molecular torques but )
also on angular velocities. Moreover, the time derivatives of

orientational variables do not define angular velocities di_More exolicit . for the se® =ID G of
rectly [see Egs.(2) and (3)]. These difficulties cannot be _explicit expressions for e S '2_{ o i} O
handled with a simple leapfrog algorithm in which the posi—eVOIlzJtlon matrlczes zare D=1l [1—(h /4)in ]+hV\2/i
tion and velocity are known at different times. It is worth +(h*/2)Pi}/[1+(h [4)Q7] and Gi={I [1-(h*/16)Q2]]
emphasizing that similar problen{sven much more diffi- +hQ}/[1+(h?/16)Q{] in the cases of principal axes and
cult) arise in the angular-momentum approddb] and the duaternion representations, respectively, whgres a sym-
Verlet and velocity Verlet frameworks7,18. metric matrix with the element@' (t+ h/Z)Q'B(H- h/2) and

The basic idea of our approach lies in involving principal Q2= Q?(t+h/2). This completes the algorithm. It is inter-
angular velocities in the integration process. Then, acting iresting to remark that the evaluatidB) exhibits the same
the spirit of the leapfrog scheme and using the Euler equafourth-order local accuracy fdn as in the case of transla-
tion (1), one obtains tional coordinates, despite the second order of the interpola-
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FIG. 1. Total energy fluctuations as functions of the length of the simulations on liquid water, performed by various techniques at four

0.01

fixed time steps(a) 1 fs, (b) 2 fs, (c) 3 fs, and(d) 4 fs.
tion (7). The reason for this results again from a cancellatiorself-consistent with the second order of global errors for our

of errors arising in coordinates and velocities during twoalgorithm (one order lower than the minimal order of trun-
cation errors for coordinates and velocijies

neighboring time steps.

It can be verified easily that the matriXx ¢\H) (I As the atomic-constraint algorithif®,10] is intensively
+\H) is orthonormal at arbitrary values of, provided exploited and its performances are generally recognized, we
H*=—H. Then, as follows from the constructidB), the  have made comparative tests using this method and our ad-
evolution matrice®; andG; are orthonormal as well. There- vanced leapfrog algorithm within quaternion and principal-
fore, if initially the orthonormality ofA; and unit norms of; axes variables, as well as all known other approaches,
are satisfied, they will be fulfilled perfectly at arbitrary times namely, the fifth-order Gear algorithiil1], the implicit
in the future, despite the approximate character of the trajedeapfrog algorithm of Fincharfil5], the pseudoparticle for-
tories produced. This can be considered as the main advamalism[16], and quaternion- and matrix-constraint methods
tage of the algorithm derived that distinguishes it from all[17,18. Samples of(t) as a function of the length of the

other singularity free algorithms because no additional efforsimulations at four fixed values ¢f=1, 2, 3, and 4 fs are
shown in Fig. 1. The usual value of the step size for studying

is needed to preserve the rigid structure of molecules.
We now test our approach on the basis of MD simulationssuch a system is 2 {22].
Despite the fact that the Gear algorithm integrates the

on liquid water. The simulations were performed inN¥ E
equations of motion very well &=1 fs, it has a very small

ensemble withN=256 molecules at a density of NV
=1 glcnt and at a temperature of 298 K using the potentialregion of stability and cannot be used for greater time steps
[see Fig. b)]. Small step sizes are impractical in calcula-

of Jorgensert al.[20] and reaction field geometif1]. All
runs were started from an identical well equilibrated configu-tions because too much expensive computer time is required

ration. The numerical stability was identified in terms of to cover sufficient phase space. At the same time, the
quaternion- and matrix-constraint methods as well as the

fluctuations of the total energ§=[{(E—(E))?)]*%|(E)|.

The kinetic part of the energy was calculated at timey = pseudoparticle approach produce much more stable trajecto-
setting V(t)=3[V(t—h/2)+V(t+h/2)]+0O(h?) for V ries and exhibit a similar equivalence in the energy conser-
={v;,Q;}, where the main ternD(h?) of uncertainties is vation. Worse results are observed for Fincham’s leapfrog
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method. Finally, the best numerical stability is achieved inconsidered4 fs) is still suitable for precise calculations. The
the atomic-constraint technique and our leapfrog schemeatioI" can be fitted with great accuracy to the functi©h?
within both quaternion and principal axis representationswith a coefficient ofC~0.29% fs 2. This is completely in
which conserve the energy approximately with the same adine with our theoretical prediction about a characteristic
curacy (the results for prinCipaI-aXiS variables and the sguare growth of g|oba| errors and, as a Consequemt)eat
pseudoparticle formalism are not included in the figure tos.p, The square growth was observed in all other ap-
simplify the graph. Very few iterationgthe mean number of ~ ,roaches, except for the Gear algorithm. However, only the

iterations varied from 3 to 5 dit=1—4 fs) were sufficient to advanced leapfrog algorithm provides a minimumand
find solutions to the system of nonlinear equati¢fjswith a total enerqy fl -
o 12 . . " - gy fluctuations.
precision of 10+ This contributes additional, negligibly The algorithm presented might become popular because

small computation time to the total time. : i L : .
No shift of the total energy was observed for the atomic-o.f Its great Stab'!lty’. 5|_mp_I|C|ty to |mp_lement_ fpr arbitrary
. . rigid bodies, and its intrinsic conservation of rigid structures.
constraint and our leapfrog techniqueshat4 fs over a

length of 10 000 steps. To reproduce features ofNAKE These features should be considered as significant benefits of
ensemble quantitativelil it is necessary for the rdfio the _algorithm Wi.th respect to 6.‘" Fhe other approaches. It. can
=&Y of the total energ)'/ fluctuations to the fluctuatiovis easily be substituted into existing MD programs on rigid

of the potential energy to be no more than a few percent. qulyatomic molec;ules. Moreover, since velocities appear ex-
have obtained the following levels éfat the end of the runs plicitly, the algorithm can be extended to a thermostat ver-

in our leapfrog approach: 0.0016%, 0.0065%, 0.015%, an&'lOn z;mc(ij_to mtegtrhatlon n tgle presTncehof magnetic fields. We
0.029%, corresponding ~0.29%, 1.2%, 2.7%, and 5.2% P o [0 (ISCUSS these problems elsewnere.

ath=1, 2, 3, and 4 fs, respectivelffor the system under The author thanks the president of Ukraine for financial
considerationY ~0.56%). Therefore, the greatest time stepsupport.
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